. I TERRIT DIRITI DI TERRI DIRITI DI TERRI DI TE

Seat No.

HAL-003-1015003

B. Sc. (Sem. V) (CBCS) (W.E.F.-2016)

Examination

June – 2023

Mathematics : Paper-7(A)

(Boolean Algebra & Complex Analysis-I)

Faculty Code : 003 Subject Code : 1015003

Time : $2\frac{1}{2}$ Hours / Total Marks : 70

Instructions :

- (1) All questions are compulsory.
- (2) Figures to the right indicate full marks of the question.

1	(A)	Answer the following questions :	
		(1) Define : Least element in a partially ordered set.	
		(2) In a lattice (L, \leq) , for any $a, b \in L, a \oplus (a * b) =$	_•
		(3) Define : Lattice homomorphism.	
		(4) Define : Bounded lattice.	
	(B)	Attempt any one :	2
		(1) Draw Hasse diagram of (S_6, D) .	
		(2) Let (L,\leq) be a lattice. Prove that for any $a,b \in L, a \leq b$	
		if and only if $a * b = a$.	
	(C)	Attempt any one :	3
		(1) Let (L,\leq) be a lattice. For any $a,b,c \in L$, prove that	
		a*(b*c) = (a*b)*c.	
		(2) Define : Complete lattice. Prove that every finite lattice is complete.	
	(D)	Attempt any one :	5
		 Prove that direct product of two lattices is a lattice. State and prove De Morgan's laws for a complemented distributive lattice. 	

[Contd...

2	(A)	Answer the following questions : (1) Boolean algebra is a and lattice. (2) Write atoms of boolean algebra $(S_{30}, *, \oplus, ', 1, 30)$. (3) Define : Boolean homomorphism. (4) How many minterms can be formed using <i>n</i> variables ?
	(B)	Attempt any one :
		(1) Let $(B, *, \oplus, ', 0, 1)$ be a boolean algebra. Prove that a nonempty subset <i>S</i> of <i>B</i> is subboolean algebra of <i>B</i> if <i>S</i> is closed under $*$ and '.
		(2) Reduce the boolean expression $\alpha(x, y) = (x * y)' \oplus (x \oplus y)$.
	(C)	Attempt any one :
		(1) Express the boolean expression $f(x_1, x_2, x_3) = x_1x_2$ as a product of sum canonical form.
		(2) Find cube-array representation of the boolean expression $xy + xz'$.
	(D)	Attempt any one :
		(1) For any boolean algebra $(B, *, \oplus, ', 0, 1)$, in usual notations
		prove that $A(x_1 * x_2) = A(x_1) \cap A(x_2), \forall x_1, x_2 \in B$.
		(2) State and prove Stone's representation theorem.
3	(A)	Answer the following questions.
		(1) What is real part of $f(z) = z^2$?
		(2) Limit of function of complex variables need not be unique. (True/False)
		(3) Determine the points at which the function
		$f(z) = \frac{1}{z^2 + 1}$ is discontinuous.
		(4) Define : Analytic function.
	(B)	Attempt any one :
		(1) Using definition of limit, prove that
		$\lim_{z \to z_0} (az+b) = az_0 + b$.
		(2) Prove that $f(z) = e^z$ is entire function.

- (C) Attempt any **one** :
 - (1) Prove that $\lim_{z \to z_0} \frac{\overline{z}}{z}$ does not exist.
 - (2) Determine the analytic function f(z) = u + iv, where $u(x, y) = \sin x \cosh y$.
- (D) Attempt any **one** :
 - (1) Show that the function

$$f(z) = \begin{cases} |z|^2; z \neq 0; \\ 0; z = 0 \end{cases}$$

is differentiable only at origin.

- (2) State and prove necessary condition for a function f(z) to be analytic.
- 4 (A) Answer the following questions :
 - (1) Show that f(z) = xy + iy is nowhere analytic.
 - (2) State Cauchy-Riemann equations in polar form.
 - (3) State Cauchy-Goursat theorem.

(4) If *C* represents the unit circle then
$$\int_{C} \frac{1}{2} dz =$$

- (B) Attempt any **one** :
 - (1) Using Cauchy-Riemann equations in polar form, prove that the function $f(z) = \frac{1}{z}(z \neq 0)$ is analytic in its domain.
 - (2) If *C* is the arc of the circle |z| = 2 lying in the first quadrant, then find the upper bound of $\int_C \frac{1}{z^2 1} dz$.
- (C) Attempt any **one** :
 - (1) If f(z) = u + iv is analytic function then prove that u and v satisfy Laplace equation.
 - (2) If f(z) = u + iv is analytic function and u is constant then prove that f(z) is constant.

HAL-003-1015003]

[Contd...

5

2

3

4

- (D) Attempt any **one** :
 - (1) If f(z) = u(x, y) + iv(x, y) is an analytic function then prove that $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} |f(z)|^2 = 4 |f'(z)|^2$.
 - (2) State and prove Cauchy's integral formula.

- (1) Which theorem is the converse of Cauchy-Goursat theorem ?
- (2) $\sin z$ is bounded. [True/False]
- (3) State Maximum modulus principle.
- (4) What is the number of roots in \mathbb{C} of the polynomial $z^5 + 1 = 0$?
- (B) Attempt any **one** :

(1) If C is unit circle, then evaluate
$$\int_{C} \frac{e^{2z}}{z^4} dz$$
.

(2) If
$$C :|z|=1$$
, then evaluate $\int_C \frac{\sin z}{\left(z-\frac{\pi}{6}\right)^3} dz$.

- (C) Attempt any **one** :
 - (1) State and prove Cauchy's inequality.
 - (2) State and prove Liouville's theorem.
- (D) Attempt any **one** :
 - (1) If f(z) is analytic within and on simple closed contour C and z_0 is any point interior to C, then prove that

4

$$f'(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z-z_0)^2} dz.$$

(2) State and prove Morera's theorem.

[30/3]

4

3

5

2